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Direct numerical simulation of turbulent channel
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The main objectives of this study are to suggest a proper boundary condition at the
interface between a permeable block and turbulent channel flow and to investigate
the characteristics of turbulent channel flow with permeable walls. The boundary
condition suggested is an extended version of that applied to laminar channel flow
by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the
streamwise and spanwise directions at the interface between the permeable block
and turbulent channel flow. With the proposed boundary condition, direct numer-
ical simulations of turbulent channel flow that is bounded by the permeable wall
are performed and significant skin-friction reductions at the permeable wall are ob-
tained with modification of overall flow structures. The viscous sublayer thickness
is decreased and the near-wall vortical structures are significantly weakened by the
permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds
shear stress, and pressure and vorticity fluctuations throughout the channel except
very near the wall. The increase of some turbulence quantities there is due to the
slip-velocity fluctuations at the wall. The boundary condition proposed for the per-
meable wall is validated by comparing solutions with those obtained from a separate
direct numerical simulation using both the Brinkman equation for the interior of a
permeable block and the Navier–Stokes equation for the main channel bounded by a
permeable block.

1. Introduction
The flow in a channel surrounded by a permeable medium has significant impor-

tance in various areas of engineering because many industrial processes are associated
with the phenomena occurring in this flow. Examples include the manufacturing pro-
cess of advanced composites, oil recovery, and underground water flow. Therefore, a
large number of studies have been made so far, especially on the accurate predic-
tion of various flow phenomena inside and over a permeable medium, because the
precise description of the flow is essential in understanding the associated transport
phenomena. Although Darcy’s well-known law is useful and sufficient for predicting
bulk flow, detailed transport phenomena near the boundary of a permeable block
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cannot be captured merely by it. Therefore, a more sophisticated flow model should
be considered to precisely represent this boundary layer.

Traditionally, flow near a permeable interface had been modelled by Brinkman’s
modification of Darcy’s law, where a linear combination of the Stokes equation
for microscopic pore-level flow and Darcy’s law for the bulk resistance was used
(Brinkman 1947). Although it is still uncertain how to determine the viscosity of the
whole fluid-filled permeable matrix (which is called the effective viscosity) when using
Brinkman’s equation, Brinkman’s modification is in general regarded as a plausible
extension of Darcy’s law for a uniformly dilute permeable matrix under the condition
that effects of the boundary or interface are not significant, because theoretically
more rigorous attempts to reach a universal governing equation for the flow in a
permeable medium by the ensemble- or local volume-averaging of the microscopic
pore-level flows also lead to an equation in a similar form to Brinkman’s (Slattery
1969; Saffman 1971; Lundgren 1972; Whitaker 1986). The usefulness of Brinkman’s
equation was shown by Neale & Nader (1974a) with the effective viscosity assumed
to be the fluid viscosity (which was originally suggested by Brinkman). For theoretical
approaches to determine the effective viscosity as a function of the porosity as well
as the fluid viscosity, see Lundgren (1972) and Koplik, Levine & Zee (1983).

However, the applicability of Brinkman’s equation to the flow near the permeable
interface has been questioned: Sahraoui & Kaviany (1992) performed a direct pore-
level simulation and showed that the prediction performance of Brinkman’s equation
near the permeable boundary depends significantly on the microscopic pore structure
and thus the equation can be quite erroneous, especially in predicting the correct
thickness of the boundary layer formed near the permeable interface, which was also
shown by Gupte & Advani’s (1997) experimental work using LDA measurements.
Moreover, Kaviany (1987) showed through an analysis of Vafai & Tien’s (1981)
slightly different version of Brinkman’s equation that a Brinkman-type equation can
yield a boundary layer thickness smaller than the diameter of a pore in the porous
medium where the Carman–Kozeny relation holds, which violates the fundamental
assumption of the local volume-averaging technique. Although Sahraoui & Kaviany
(1992) also proposed some remedies by determining the effective viscosity as a func-
tion of space, their suggestions were based on pore-level simulations with extremely
simplified pore structures (two-dimensional in-line or staggered arrays of cylinders)
and so still has a limitation for direct application to real permeable matrices with com-
plex pore geometry. Therefore, a more general treatment of the permeable boundary
is required.

On the other hand, if the main interest lies in the outer channel flow rather than
in the flow inside the permeable wall itself, a different approach is possible, in which
the interaction between the outer channel flow and the permeable wall is modelled as
a boundary condition. Beavers & Joseph (1967) proposed a slip-boundary condition
at the interface between a permeable block and laminar channel flow and derived
an analytic solution of the flow. They also verified their slip-boundary condition
by comparing the analytic solution with their experimental work. Saffman (1971)
also proved the slip-boundary condition suggested by Beavers & Joseph to be valid
from his theoretical work. Sahraoui & Kaviany (1992) showed that unlike Brinkman’s
equation, the slip-boundary condition of Beavers & Joseph properly describes the flow
phenomenon with a proper value of the slip coefficient α. Gupte & Advani (1997)
experimentally showed that there exists a slip velocity in the main-flow direction
at the interface between the permeable block and laminar channel flow, which is
consistent with the slip-boundary condition of Beavers & Joseph, while Brinkman’s
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equation is erroneous in estimating the correct screening depth of the boundary layer
into the permeable block. In spite of the difficulty of assigning a precise value for the
non-dimensional slip coefficient α, the slip-boundary condition of Beavers & Joseph
has been proved to properly describe the physical phenomena of laminar channel
flow above the permeable wall.

Recent manufacturing processes and some other engineering applications include
turbulent flows that interact with a permeable block (Antohe & Lage 1997). In
combustion processes, for instance, the use of porous inert media leads to a reduction
in gas temperature and consequently to a reduction of NOx emissions. Evidently,
turbulence affects the transport phenomena and combustion significantly. Another
important practical application is the prediction of contaminant transport by wind
through forests and crops, which is generally modelled as flow through porous media.
The geometric dimensions and fluid speed are sufficient for generating turbulence.
For this reason, understanding the characteristics of turbulent flow above a permeable
wall becomes important and thus an accurate boundary condition that describes the
flow phenomenon at the interface between the permeable block and outer turbulent
flow should be investigated.

Recently, Perot & Moin (1995) investigated turbulent flow above a ‘perfectly’
permeable wall using the direct numerical simulation technique. Their objective was
to investigate the modification of flow characteristics in the absence of the blocking
effect of a no-slip wall, and thus they allowed the fluid to freely permeate through
the surface, i.e. ∂v/∂y = 0 rather than v = 0 on the wall, where y is the wall-normal
direction and v is the wall-normal velocity. Wagner & Friedrich (1997) applied the
same boundary condition to a turbulent pipe flow and reported a significant drag
increase. In most manufacturing processes, however, permeable blocks are confined in
the overall system so that the freely permeable condition for the wall-normal velocity
may not be realized. Therefore, the definition of the permeable wall pursued in this
study is completely different from that of Perot & Moin.

The objectives of the present study are to suggest a proper boundary condition
at the interface between turbulent channel flow and a permeable block, which is an
extended version of Beavers & Joseph’s (1967), and to investigate the characteristics
of the flow. The boundary condition suggested for the permeable wall is applied to
fully developed turbulent channel flow with varying permeability k and the resulting
flow fields are compared with turbulent channel flow with a no-slip wall. Numerical
procedures are presented in § 2. The boundary condition for the permeable wall is
given in § 3. Variations of drag and velocity profiles due to the permeable wall are
presented in § 4 and turbulence statistics are provided in § 5. Finally, validation of the
proposed boundary condition is presented in § 6, followed by summary in § 7.

2. Numerical procedures
The governing equations are the unsteady incompressible three-dimensional Navier–

Stokes equations and the continuity equation
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where t is the time, xi are the spatial coordinates, ui are the corresponding velocity
components and p is the pressure. All variables are normalized by the channel half-
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Figure 1. Schematic diagram of the flow geometry.

width δ and the laminar centreline velocity uc, and the Reynolds number is defined
as Re = ucδ/ν, where ν is the kinematic viscosity.

To solve (1) and (2), a semi-implicit, fractional step method is used (Kim & Moin
1985; Le & Moin 1991):
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where m is the substep index of a third-order Runge–Kutta method (m = 1, 2, 3),
β1 = 4
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Here, the convection term is advanced with a third-order Runge–Kutta method and
the Crank–Nicolson method is used for the diffusion term. The relation between p
and φ is given as

pm = pm−1 + φm − βm∆t

Re
∇2φm. (7)

All the spatial derivatives are discretized with the second-order central-difference
scheme.

The channel flow geometry and coordinate system are shown in figure 1. The upper
and lower walls are bounded by permeable blocks. Fully developed turbulent channel
flow with permeable walls is homogeneous in the streamwise (x) and spanwise (z)
directions, and periodic boundary conditions are used in the x- and z-directions. The
boundary condition that describes the permeable wall is presented in the following
section. The computations are carried out maintaining a constant mass flow rate in
the channel for a Reynolds number of 3000 based on the laminar centreline velocity uc
and channel half-width δ (the Reynolds number based on the bulk mean velocity and
the full channel width is 4000), which corresponds to a Reynolds number of about 140
based on the wall-shear velocity uτim at the impermeable wall and channel half-width.
The streamwise and spanwise computational periods are 3πδ and πδ, respectively.
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The number of grid points is 64×97×96 in the streamwise, wall-normal and spanwise
directions. Uniform grids are used in the streamwise and spanwise directions and the
consequent grid spacings in wall units are ∆x+ ≈ 20.3 and ∆z+ ≈ 4.5. In the wall-
normal direction, non-uniform grids are constructed by using a hyperbolic tangent
function (∆y+ = 0.3–6.6). The spatial resolutions used in this study are very similar
to those in Kim, Moin & Moser (1987). It was shown in Choi, Moin & Kim (1992)
that when the second-order central-difference scheme is used, the same number of
grid points as for the spectral method is sufficient to have a spectral resolution of
the turbulence intensities and Reynolds shear stress, but there is a slight under- or
over-prediction of the vorticity fluctuations. The CFL number is fixed to be 1.0,
which corresponds to ∆t+ = ∆tu2

τim
/ν ≈ 0.37. It was shown by Choi & Moin (1994)

that a computational time step of less than ∆t+ ≈ 0.4 accurately predicts turbulence
statistics in a turbulent channel flow.

3. Boundary condition for the permeable wall
3.1. Previous work on the boundary condition for the permeable wall

Among many other boundary conditions describing the permeable wall, Beavers
& Joseph (1967) reported a slip-boundary condition for laminar channel flow and
introduced a non-dimensional parameter α, called the slip coefficient, in addition
to the permeability k that has the physical dimension of [L2]. They verified the
slip-boundary condition by comparing their analytic solution with their experimental
result for laminar channel flow. They used Darcy’s law as follows to formulate the
flow in the interior of the permeable block:

Q = −k
µ

dp

dx
, (8)

where Q is the mean filtered velocity (that is, locally averaged velocity over a volume
which is much larger than the pore but still smaller than the global size of the
permeable block) in the interior of the permeable block (see figure 1), µ is the
viscosity, and dp/dx is the mean pressure gradient in the channel. Darcy’s law above
can be used in the absence of body forces and has been proved to be valid for a
broad class of fluid flows. Beavers & Joseph suggested the following slip-boundary
condition at the permeable interface to describe the interaction between the flow
inside the permeable block and outer laminar channel flow (see figure 1):

du

dy wall

=
α

k1/2
(uwall − Q), (9)

vwall = 0, (10)

where u and v are the velocities in the streamwise and wall-normal directions,
respectively. The slip coefficient α does not depend on the viscosity of the fluid µ
but depends on the structure of the permeable material at the interface between
the permeable block and the flow field (Beavers, Sparrow & Masha 1974). The
permeability k depends on the density of the interior region of the permeable block.
Thus, the parameter α/k1/2 is not a function of the fluid property. Note that the
slip-boundary condition (9) can be also interpreted as scaling of the velocity gradient
at the permeable interface, based on the velocity profile within the screening depth
of the permeable block (figure 1), with the characteristic length scale k1/2 and the
characteristic velocity scale (uwall−Q). Therefore, once the slip coefficient α is properly
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chosen as a proportionality constant for such scaling, the correct slip velocity can be
predicted without knowledge of the actual velocity profile and screening depth in the
permeable block.

Although the slip coefficient α is difficult to measure, the slip-boundary condition
(9) has been verified to properly describe the physical flow phenomena in laminar
flow fields above permeable blocks by the theoretical research by Saffman (1971),
numerical research by Sahraoui & Kaviany (1992), and experimental research by
Gupte & Advani (1997). The importance of the slip-boundary condition (9) is that
it describes a slip velocity in the main flow direction at the interface between the
permeable block and the outer flow stream and is also consistent with flow phenomena.

3.2. Boundary condition for the permeable wall in turbulent flow

According to Beavers & Joseph (1967), there is a slip velocity uwall at the interface
between the main laminar flow stream and the permeable block, and this slip velocity
is determined by the slip-boundary condition (9) and Darcy’s law (8). For the case of
turbulent flow above a permeable block, there should exist a slip-velocity condition
at the permeable interface very similar to that for the case of laminar flow for the
following reasons. First, in the interior of the permeable block, the characteristic
length is a typical diameter of a pore, and thus the characteristic Reynolds number
in the permeable block is very small. Therefore, flow in the permeable block is still
expected to be laminar and to be governed by Darcy’s law (8). Indeed, there may be a
situation where the microscopic flow in each individual pore also becomes turbulent
if the applied mean pressure gradient is very large, but we limit our interest to
cases where flow in the permeable block remains laminar. Second, the slip-boundary
condition at the permeable interface described in (9) is also valid for turbulent flow
because the coefficients in (9), α and k, depend on the material of the permeable block,
not on the flow characteristics above it. In the case of spanwise velocity (w), a similar
slip-boundary condition can be defined with no mean velocity in the permeable block
because there is no mean pressure gradient in the spanwise direction.

Therefore, the boundary condition at the permeable interface for turbulent flow is
summarized as follows:

∂u

∂y wall

=
α

k1/2
(uwall − Q), (11)

∂w

∂y wall

=
α

k1/2
wwall , (12)

vwall = 0, (13)

where Q is the mean velocity in the permeable block that is given by Darcy’s
law (8). The boundary condition (11)–(13) together with Darcy’s law (8) are non-
dimensionalized with the channel half-width δ and the laminar centreline velocity
uc:

Q = −4Re
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2
wwall , (16)

vwall = 0, (17)
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α σ (k1/2)+
im (k1/2)+ Rek1/2

1 400 0.681 0.677 2.29× 10−3

1 200 1.363 1.328 1.76× 10−2

1 100 2.726 2.526 1.28× 10−1

1 50 5.452 4.601 8.47× 10−1

Table 1. (k1/2)+ and Rek1/2 for various σ.

where σ ≡ 2δ/k1/2 as in Beavers & Joseph (1967). It should be mentioned here that
the boundary conditions (15) and (16) should be implemented implicitly in time, e.g.
∂w/∂y|n+1

wall = (ασ/2)wn+1
wall (n is the time step). An explicit treatment of the boundary

condition such as ∂w/∂y|nwall = (ασ/2)wn+1
wall (that is, imposing wwall at the time t+ ∆t

as a Dirichlet boundary condition, based on sensing ∂w/∂y|wall at the time t) cannot
properly reflect the flow condition at a permeable interface and completely changes
the solution. For an example of the large change depending on the explicit or implicit
treatment of a Neumann-type boundary condition, see the Appendix.

The boundary condition shows that the slip coefficient α and parameter σ are the
primary parameters that characterize the permeable wall. According to Beavers &
Joseph (1967) and Gupte & Advani (1997), changing α or σ plays the same role as
changing the slip velocity at the permeable interface, as can be easily understood from
(15) and (16). Within the permeable block, however, the roles of these two parameters
are very different: changing the slip coefficient α may affect the screening depth of
the boundary layer into the permeable block, while changing the parameter σ directly
affects the velocity Q. In the present study, we are only concerned with turbulent flow
above the permeable block, so we fix the slip coefficient α and change the parameter
σ. This is also because α is still not completely known for a specific permeable block
and a parameter setting like this is sufficient to investigate the features of turbulent
channel flow above the permeable block.

The slip coefficient α is fixed to be 1 and the parameter σ varies from 400 to 50.
Note that σ → ∞ corresponds to the case of an impermeable wall. Here, special
attention should be paid to the proper choice of the inverse of non-dimensionalized
permeability σ. In general, pores exist on the surface as well as in the interior of
a permeable block. Therefore, for the proposed boundary condition (15)–(17) to be
meaningful for direct numerical simulation of turbulent flow, the typical size of a pore
on the interface must be much smaller than the size of near-wall coherent structure
in the wall-bounded flow. The typical diameter of a pore is often represented by the
square root of the permeability, k1/2, while the diameter of a near-wall streamwise
vortex, which is known to be one of the most important near-wall structures in
wall-bounded flow, is scaled in wall units. Thus, in addition to the relative length
scale σ (= 2δ/k1/2), (k1/2)+ ≡ k1/2/(ν/uτ) should be also carefully examined. Values
of (k1/2)+ for various σ values investigated in the present study are presented in
table 1, where (k1/2)+ and (k1/2)+

im are based on the actual wall-shear velocity uτ and
the wall-shear velocity at the impermeable wall uτim , respectively. Since the statistical
diameter dv of near-wall streamwise vortices at low Reynolds number is d+

v = 25–
30 (Kim et al. 1987) and thus d+

v � (k1/2)+, the choice of the parameter σ in the
present study seems to be appropriate, while the requirement is somewhat marginally
satisfied in case of σ = 50. This is why our parametric study is limited to the cases
with relatively large values of σ. We also performed simulations for smaller values
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(a) (b)

dv dv

Figure 2. Schematic diagram of a streamwise vortex over a permeable wall:
(a) (k1/2)+ � d+

v ; (b) (k1/2)+ ' d+
v .

of σ (σ = 25, 10 and 5) and results for those cases will be briefly mentioned in
the following section, but their validity cannot be fully guaranteed. Figure 2 shows a
schematic diagram of a streamwise vortex over a permeable wall in two extreme cases,
(k1/2)+ � d+

v and (k1/2)+ ' d+
v . The present study considers the case of figure 2(a)

using the direct numerical simulation technique. In case of figure 2(b), however, it
may be possible to develop a proper boundary condition for Reynolds-averaged
Navier–Stokes simulation (RANS) of turbulent flow near a permeable interface, but
for direct numerical simulation coupling it with direct pore-level simulation will be a
unique choice.

The pore-level Reynolds number Rek1/2 ≡ Qk1/2/ν for each σ is also presented in
table 1. Note that Rek1/2 < 1 in all cases. Thus, the flow inside the permeable block is
thought to be laminar and Darcy’s law is applicable.

4. Variations of the skin friction and mean velocity profiles
4.1. Skin friction

A constant mass flow rate inside the main channel (i.e. excluding the permeable-block
region) is imposed for all simulations. Thus, any skin-friction change at the permeable
wall would be manifested in a change in the mean pressure gradient necessary to
drive the flow inside the channel with a fixed mass flow rate.

Figure 3(a) shows the time histories of the pressure gradient that is required to
drive a fixed mass flow rate inside the channel for impermeable and permeable walls.
Abrupt changes in the pressure gradient near t = 0 are due to the application of the
slip velocity at t = 0. For σ = 400, the pressure gradient is nearly the same as that
for impermeable walls, whereas substantial skin-friction (or, mean pressure gradient)
reductions are obtained at the permeable walls for σ = 200, 100 and 50 as compared
to the case of impermeable walls. With decreasing σ (i.e. increasing Q; see (14) and
figure 4), the mean skin friction and skin-friction fluctuations decrease more. The
amount of skin-friction reduction is listed in table 2 for each σ.

Figure 3(b) shows the variation of the time-averaged mean pressure gradient with
respect to σ for the cases of laminar and turbulent channel flows. The solutions for
laminar flow are obtained assuming that the flow is laminar at the same Reynolds
number, Re = ucδ/ν = 3000. Results for the cases of turbulent flow at σ = 25, 10 and
5 are also presented as the dashed line in figure 3. It is seen that curves for laminar
and turbulent flows reach the same pressure-gradient value at σ = 5, indicating that
an initial turbulent flow becomes laminar at σ = 5 (which is also evident from the
parabolic mean velocity profile obtained at σ = 5), but the validity of the proposed
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Figure 3. (a) Time history of the pressure gradient required to drive a fixed mass flow rate inside
the channel: ———, impermeable wall; – – – –, σ = 400; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—,
σ = 50; (b) variation of the mean pressure gradient with respect to σ: ———, turbulent flow
(σ = 50); – – – –, turbulent flow (σ < 50); — ·—, laminar flow. (¯̄ ) denotes the time averaging.

α σ ūwall/uc ūwall/uτ Q/uc Skin-friction
reduction (%)

1 400 0.031 0.681 1.53× 10−4 1.3
1 200 0.059 1.341 5.87× 10−4 5.1
1 100 0.108 2.565 2.13× 10−3 14.1
1 50 0.183 4.778 7.06× 10−3 28.8

Table 2. Variations of the slip velocity and skin friction with respect to σ.

boundary condition cannot be fully confirmed for such a small σ, as was already
mentioned in § 3.

It might be interesting to know which of the two boundary conditions (15) and
(16) plays a more important role in reducing the skin friction. Thus, we applied the
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Figure 4. (a) Mean velocity profiles: ———, impermeable wall; – – – –, σ = 400; · · · · · · ·, σ = 200;
— – —, σ = 100; — ·—, σ = 50; (b) ———, mean slip velocity at the permeable wall (ūwall ); and
– – – –, mean filtered velocity in the interior of the permeable block (Q).

slip-velocity boundary condition only in the spanwise direction together with uwall = 0,
resulting in 43.2% skin-friction increase for α = 1 and σ = 50. Since application of
the slip-velocity boundary condition in both the streamwise and spanwise directions
provides 28.8% skin-friction decrease, we can conclude that the streamwise slip
velocity plays an essential role in reducing the skin friction. Turbulence enhancement
by the spanwise slip velocity seems to be significantly suppressed by the streamwise
slip velocity. Without the spanwise slip velocity, the amount of skin-friction reduction
became larger (39.5% reduction) than with both the streamwise and spanwise slip
velocities at the same permeability, σ = 50. Therefore, the spanwise slip velocity seems
to play a non-negligible role in maintaining turbulence strength even if its effect is
significantly suppressed by the streamwise slip velocity.

In addition, we also examined an interesting boundary condition suggested by Perot
& Moin (1995): uwall = wwall = 0 and ∂v/∂y|wall = 0 (see § 1). Computation issues
related to this boundary condition and skin-friction variation are described in the
Appendix.
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Figure 5. Mean velocity profiles in wall units: (a) u+; (b) u+ − u+
wall ; (c) (u+ − u+

wall )/y
+. ———,

impermeable wall; – – – –, σ = 400; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—, σ = 50; •, law of the
wall (u+ = y+ and u+ = 2.5 ln y+ + 5.5).

4.2. Mean velocity profiles

Figure 4 shows the mean velocity profiles, the mean slip velocity at the permeable
wall (ūwall ) and the mean filtered velocity in the interior of the permeable block (Q).
With decreasing σ, ūwall and Q increase (see also table 2). Also, the mean velocity
gradient at the wall becomes smaller as σ decreases. Note that the mean velocity near
the centreline of the channel also becomes smaller as σ decreases, to maintain the
same mass flow rate as that of the initial turbulent channel flow with the impermeable
wall.

The mean velocity profiles normalized by the actual wall-shear velocities are shown
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σ uτ/uc (∂2ū/∂y2|wall )δ
2/uc (ν2/u3

τ) ∂
2ū/∂y2|wall

∞ 0.0454 − 8.076 −0.0096
400 0.0451 − 9.109 −0.0110
200 0.0443 −10.23 −0.0131
100 0.0421 −12.03 −0.0179
50 0.0383 −12.58 −0.0248

Table 3. Variations of uτ and ∂2ū/∂y2|wall with respect to σ.

in figure 5 for both the impermeable and permeable walls, where u+ = ū/uτ, u
+
wall =

ūwall/uτ and y+ = yuτ/ν. The slopes of the log-law in the channels with the permeable
walls remain about the same as in the impermeable channel, but there are upward
shifts of the velocity profiles in wall units (see figure 5a). These upward shifts are
due to the slip velocity at the permeable wall. Thus, we redraw the velocity profiles
as u+ − u+

wall in figure 5(b), which shows downward shifts in the log-law for the
permeable walls. The amount of downward shift becomes larger for smaller σ. This
behaviour is quite different from those observed in drag-reducing flows such as riblets
(Walsh 1982; Choi, Moin & Kim 1993), active blowing/suction (Choi, Moin & Kim
1994), and polymer (Lumley 1973; Virk 1975), where upward shifts in the log-law are
observed.

The downward shift in the log-law may be associated with a decrease of the viscous
sublayer thickness. The Taylor series expansion yields

ū(y) = ūwall +
∂ū

∂y wall

y +
1

2

∂2ū

∂y2
wall

y2 + O(y3), (18)

which can be recast in terms of wall variables as follows:

u+ = u+
wall + y+ +

1

2

(
ν2

u3
τ

)
∂2ū

∂y2
wall

y+2
+ O(y+3

), (19)

and then

u+ − u+
wall

y+
= 1 +

1

2

(
ν2

u3
τ

)
∂2ū

∂y2
wall

y+ + O(y+2
). (20)

Note that the departure from (u+−u+
wall )/y

+ = 1 is mainly due to the magnitudes of uτ
and ∂2ū/∂y2|wall . With decreasing σ, both uτ and ∂2ū/∂y2|wall monotonically decrease,
resulting in a monotonic increase of |∂2ū/∂y2|/u3

τ at the wall (see table 3). Therefore,
the viscous sublayer thickness, in which (u+−u+

wall )/y
+ ≈ 1 is satisfied, decreases more

at smaller σ (see figure 5c). The decrease of the viscous sublayer thickness above the
permeable wall is natural in the sense that the permeable wall relaxes the no-slip
boundary condition at the wall which is critical in forming the viscous sublayer near
the wall.

5. Turbulence statistics
In this section turbulence statistics from the calculations of turbulent channel flow

with the permeable walls (σ = 200, 100 and 50) are presented and compared with
those with impermeable walls.
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Figure 6. Root-mean-square velocity fluctuations normalized by the wall-shear velocity at the
impermeable wall uτim : ———, impermeable wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—, σ = 50.

5.1. Velocity, pressure and vorticity fluctuations

Turbulence intensities above permeable walls normalized by the wall-shear velocity
at the impermeable wall (uτim) are shown in figure 6, together with those above the
impermeable wall. Turbulence intensities are significantly reduced by the permeable
wall and they are reduced more at smaller σ. The increase of urms and wrms very near
the wall is due to the fluctuations of the slip velocities uwall and wwall . Also, from
the continuity (∂u/∂x|wall + ∂w/∂z|wall = −∂v/∂y|wall 6= 0), the wall-normal velocity
fluctuations above the permeable wall are slightly larger very near the wall than that
above the impermeable wall.

Figure 7 shows the profile of the root-mean-square pressure fluctuations. The
pressure fluctuations are substantially reduced throughout the channel due to the
permeable wall. Reduction of the surface pressure fluctuations is especially notable
since this implies that one can also reduce the structure-generated noise within the
turbulent boundary layer. The production and dissipation of the turbulent kinetic
energy also showed the same trend, indicating that the overall turbulence activity is
weakened by the permeable wall.

Root-mean-square vorticity fluctuations are shown in figure 8. All three components
of vorticity fluctuations are substantially reduced throughout the channel due to the
permeable wall. The increase of ωyrms very near the wall is due to the fluctuations of
the slip velocities uwall and wwall . It is well known that the existence of the streamwise
vorticity at the impermeable wall is a kinematic result of the presence of the primary
streamwise vortex above the wall and no-slip boundary condition at the wall. The
y-location of the local maximum of ωxrms, y

+ ≈ 20 (y/δ ≈ −0.85) corresponds to
the statistical location of the primary streamwise vortex above the impermeable wall.
For the permeable wall, the slip-velocity condition reduces the streamwise vorticity
fluctuations above the wall, and thus ωxrms at the wall decreases more at smaller σ.
The spanwise vorticity fluctuations at the permeable wall are also reduced due to the
slip-velocity condition.
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Figure 7. Root-mean-square pressure fluctuations normalized by the wall-shear velocity uτim :
———, impermeable wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—, σ = 50.
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Figure 8. Root-mean-square vorticity fluctuations normalized by the wall-shear velocity uτim and
kinematic viscosity ν: ———, impermeable wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—, σ = 50.

Instantaneous streamwise and spanwise vorticities above the permeable wall (σ =
50) are shown in figure 9, together with those above the impermeable wall. It is clear
that the near-wall vorticities are significantly reduced by the permeable wall. This
weakened streamwise vorticity implies weakened ejection and sweep motions near
the wall, which results in reduced turbulence production and Reynolds shear stress
(see below). Also it is seen in figure 9(b) that the shear layer near the impermeable
wall is significantly weakened by the slip-boundary condition of the permeable wall.
The two-point correlations of the streamwise and wall-normal velocities in the span-
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Figure 9. Contours of instantaneous streamwise and spanwise vorticities: (a) ωx; (b) ωz . The
contours of ωxδ/uτim are from −100 to 100 in increments of 5 and those of ωzδ/uτim are from −300
to 300 in increments of 8.

wise direction showed that both the streak spacing and the diameter of near-wall
streamwise vortices increase as σ decreases.

5.2. Reynolds shear stress, skewness and flatness

The Reynolds shear stress −u′v′ is shown in figure 10. The total shear stress, −u′v′ +
(1/Re) ∂ū/∂y, is also shown in this figure. In the fully developed channel flow
considered here, this profile should be a straight line when the flow reaches an
equilibrium state. The computed results clearly indicate that this is the case. The
slope of the total shear stress is reduced by the permeable wall, indicating that skin-
friction reduction occurs. Also, there is a significant reduction in the Reynolds shear
stress throughout the channel.

A quadrant analysis of the Reynolds shear stress (Wallace, Eckelmann & Brodkey
1972; Willmarth & Lu 1972) is performed and shown in figure 11. The second
quadrant event (u′ < 0 and v′ > 0: ejection) and fourth quadrant event (u′ > 0 and
v′ < 0: sweep), which contribute to the positive Reynolds shear stress, are significantly
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Figure 10. Reynolds shear stress (lines) and total shear stress (lines with •) normalized by the
wall-shear velocity uτim : ———, impermeable wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—,
σ = 50.

reduced by the permeable wall, while the changes in the first and third quadrant events
are less significant.

Figure 12 shows the skewness and flatness factors of the Reynolds shear stress.
For the impermeable wall, the skewness and flatness are very large near the wall
and they show slight increases in magnitudes toward the centreline except near the
centreline of the channel. The magnitudes of the skewness and flatness agree very
well with those of Kim et al. (1987). For permeable walls, the skewness and flatness
factors are nearly the same as those for impermeable walls except very near the
wall. In the near-wall region, they are reduced more at smaller σ, meaning that
the Reynolds-shear-stress-producing events near the permeable wall are less skewed
and less intermittent. It is also interesting to note that the Reynolds shear stress is
greatly reduced throughout the channel (figure 10), while the skewness and flatness
are affected only in the near-wall region.

5.3. Pressure–strain correlation

Figure 13 shows diagonal elements of the pressure–strain correlation tensor

φij = p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (21)

These terms govern the exchange of energy among the three components of turbulent
kinetic energy (Hinze 1975). The negative sign for φκκ (no summation) indicates

loss, or transfer of energy from u′κ
2 to other components, whereas the positive sign

denotes energy gain. In the case of an impermeable wall, except in the vicinity of the
wall, the streamwise velocity fluctuations transfer energy to the cross-stream velocity
components. However, very near the wall, there is a large energy transfer from the
wall-normal velocity component to the streamwise and spanwise velocity components.
This phenomenon is referred as the splatting or impingement effect (Moin & Kim
1982).



Turbulent channel flow with permeable walls 275

y/ä

–1.0 –0.9 –0.8 –0.7 –0.6 –0.5
–0.1

0

0.1

0.2

0.3

0.4

0.5
(a)

–1.0 –0.9 –0.8 –0.7 –0.6 –0.5
–0.1

0

0.1

0.2

0.3

0.4

0.5
(b)

–u
!
v!

/u
2 s i

m
–u

!
v!

/u
2 s i

m

Q2

Q1

Q4

Q3

Figure 11. Reynolds shear stress from each quadrant normalized by the wall-shear velocity uτim : (a)
first (Q1) and second (Q2) quadrants; (b) third (Q3) and fourth (Q4) quadrants. ———, impermeable
wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—, σ = 50.

In the cases of permeable walls, the magnitudes of the pressure–strain correlations
are significantly reduced throughout the channel. Interesting behaviours due to the
slip-boundary condition are observed very near the wall. Due to the slip velocities,
φ11, φ22 and φ33 are not zero at the wall. Also, since the magnitude of ∂u/∂x|wall

is very small compared to ∂w/∂z|wall , |φ33| ≈ |φ22| � |φ11| at the wall. Very near
the wall, energy from the wall-normal velocity component is transferred only to the
spanwise velocity component, and not to the streamwise velocity component (note
that φ11 < 0 throughout the channel for permeable walls). The rate of energy transfer
from the wall-normal velocity component to the spanwise component is reduced near
the wall, indicating that the splatting is considerably reduced by the permeable wall.
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Figure 13. Diagonal elements of the pressure–strain correlation tensor normalized by the
wall-shear velocity uτim : ———, impermeable wall; · · · · · · ·, σ = 200; — – —, σ = 100; — ·—,
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6. Validation of the proposed boundary condition
In this section, the suitability of the boundary condition (15)–(16) proposed for

the description of turbulent flow bounded by permeable walls is examined. In order
to examine the validity of the proposed boundary condition, we have performed a
different kind of numerical simulation, where flows inside bounding permeable blocks
and turbulent channel flow between those permeable blocks are simultaneously solved
(see figure 14). For brevity, hereinafter a simulation including the interior of permeable
blocks as well as the main channel is denoted as CP (meaning channel and permeable
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Figure 14. Schematic diagram of the flow geometry for simulation including permeable blocks
(CP).

block), while one including only the main channel but with the proposed boundary
condition (§ 3) imposed at the permeable interface is denoted as CO (meaning channel
only). The proposed boundary condition (15)–(16) will be verified by comparing
instantaneous velocity fields at the permeable interface obtained from CP with the
proposed boundary condition. Comparison between the turbulence statistics inside
the main channel obtained from CP and CO will be also shown in this section.

6.1. Governing equation and computational detail

For the governing equation for the flow in a permeable block, the following unsteady
Brinkman’s equation is chosen:

ρ

(
∂ui

∂t
+

∂

∂xj
uiuj

)
= − ∂p

∂xi
+ µ′

∂

∂xj

∂ui

∂xj
− µ

k
ui, (22)

∂ui

∂xi
= 0, (23)

where ui are the filtered velocity components, p is the pressure, µ is the fluid viscosity, µ′
is the effective viscosity of the fluid-filled permeable medium and k is the permeability.
The second term in the right-hand-side of (22) represents the flow resistance by the
velocity gradient on a macroscopic scale, whereas the third term is Darcy’s law
that describes the average of microscopic (pore-level) flow resistance. On the other
hand, inside the main channel bounded by the permeable blocks, the Navier–Stokes
equations are solved and continuity of the shear stresses is assumed at the interface
between the main channel and permeable block as follows (Neale & Nader 1974a;
Kaviany 1991):

µ′
∂u

∂y perm
= µ

∂u

∂y chan
, (24)

µ′
∂w

∂y perm

= µ
∂w

∂y chan

, (25)
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where ∂(·)/∂y|perm and ∂(·)/∂y|chan denote the gradients in the interface-normal direc-
tion at the interface, respectively evaluated within the permeable medium and the
main channel. Although several ways of modelling µ′ as a function of µ and/or
porosity have been proposed so far, as was already mentioned in § 1, none of the
models seems to provide universally satisfactory results at present. In the present
study, Neale & Nader’s (1974b) suggestion is adopted where µ′ is related to the slip
coefficient α of the permeable interface:

µ′ = α2µ. (26)

Equations (22), (23) and (26) can be non-dimensionalized with the laminar centreline
velocity uc and the channel half-width δ as follows:

∂ui

∂t
+

∂

∂xj
uiuj = − ∂p

∂xi
+
α2

Re

∂

∂xj

∂ui

∂xj
− σ2

4Re
ui, (27)

∂ui

∂xi
= 0. (28)

Note that α = 1 in the present study and thus the effective viscosity is equal to the fluid
viscosity. Therefore, the resulting governing equation will be a proper representation
of the flow in a uniformly dilute porous matrix, where the property variation near
the boundary is not significant. Also note that the governing equation becomes
quite similar to that suggested by Vafai & Tien (1981) when the porosity is very
high. They also included an empirically determined inertial term in their governing
equation to handle the deviation from Darcy’s law that occurs when the pore-level
Reynolds number is relatively high. However, since our pore-level Reynolds number
is relatively low (see table 1), we did not consider such a term in our governing
equation. In the case of fully developed laminar channel flow, we confirmed that the
governing equations (27) and (28) for the permeable block and the interface condition
(24) for the permeable interface provide the boundary condition (15) suggested by
Beavers & Joseph (1967).

The solution technique used for (27) and (28) is a semi-implicit, fractional step
method and it is similar to that used for (1) and (2) (see § 2), except that the Crank–
Nicolson method is used for the third term in the right-hand-side of (27). Boundary
conditions and computational parameters in the streamwise and spanwise directions
are identical to those in the CO case (that is, periodic boundary conditions both in
the streamwise and spanwise directions and 64 × 96 meshes in the computational
periods of 3πδ × πδ in the streamwise and spanwise directions, respectively). The
height of each permeable block is 4δ (figure 14). There are 72 non-uniform grid
points in the wall-normal direction in each permeable block, while the wall-normal
grid distribution inside the main channel is identical to that of simulation CO. At
the permeable interface, continuity of the shear stresses, (24)–(25), and zero normal
velocity, v = 0, are assumed, while the no-slip condition is imposed at the other
boundary of each permeable block. We also applied µ′ ∂v/∂y|perm = µ ∂v/∂y|chan as
an interface boundary condition for v. In this case, the simulation became unstable.
The same interface condition was also applied to a laminar channel flow, providing
a non-physical solution. The effect of the boundary condition for v at the permeable
interface on the numerical solution has not been investigated in the literature and
thus the validity of the interface boundary condition for v cannot be accurately
judged from the present study. In the present study, however, we only focus on the
parameter range of large σ, where v̄ = 0 and the wall-normal velocity fluctuations
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Figure 15. Scatter plot of ∂u/∂y versus (ασ/2)(u− Q) at the interface (α = 1): (a) σ = 400;
(b) σ = 200; (c) σ = 100; (d) σ = 50. Solid lines denote the proposed boundary condition (15).

near the permeable interface are very small. Therefore, the boundary condition used
at the interface, v = 0, is not unreasonable.

In this section, computations are carried out with a fixed mean pressure gradient
at each σ for ease of comparison between the results of CP and CO: that is,
−dP/dx = 2.04×10−3ρu2

c/δ, 1.96×10−3ρu2
c/δ, 1.77×10−3ρu2

c/δ and 1.47×10−3ρu2
c/δ,

respectively, for σ = 400, 200, 100 and 50. These values of −dP/dx are obtained
from figure 3(b). CO is performed again with the fixed mean pressure gradient for
the direct comparison.

6.2. Comparison of results

Figures 15 and 16 are scatter plots of ∂u/∂y vs. (ασ/2)(u − Q) and ∂w/∂y vs.
(ασ/2)w, respectively, at the permeable interface sampled from instantaneous flow
fields obtained by CP (α = 1). The abscissae and ordinates in figures 15 and 16
correspond to the right- and left-hand sides of the proposed boundary conditions (15)
and (16), respectively; (15) and (16) are also denoted by solid lines in these figures.
At σ = 400 and 200, the correlations between ∂u/∂y|wall and (ασ/2)(uwall − Q) or
∂w/∂y|wall and (ασ/2)wwall are nearly perfect, and become less perfect as σ decreases
but they are still high at σ = 100 and 50. These high correlations indicate that the
proposed boundary conditions (15) and (16) describe the instantaneous interaction
between the turbulent flow and permeable block very well and thus they are suitable
for direct numerical simulation of turbulent flow over a permeable wall.
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Figure 17 shows the root-mean-square velocity and vorticity fluctuations above the
permeable interface obtained by CP and CO. Results obtained from two different
simulations showed excellent agreement with each other for σ = 400, 200 and 100
(see, for example, figure 17a), which is natural considering the strong correlations
shown in figures 15 and 16. It is interesting that results at σ = 50 agree fairly well
with each other although the correlation at σ = 50 is not as strong as for σ = 100.
For σ < 50, the agreement between the results from two different simulations (CP
and CO) became worse, which may be due to (k1/2)+ ' d+

v in these cases as described
in § 3.2.

7. Summary
The objectives of the present study were to suggest a proper boundary condition

at the interface between turbulent channel flow and a permeable block, and to
investigate the turbulence characteristics above the permeable wall. The boundary
condition suggested was an extended version of Beavers & Joseph’s (1967), who
suggested a slip velocity in the streamwise direction in laminar channel flow with
permeable walls.

In the suggested slip-boundary condition (14)–(17), there are two parameters α and
σ. The parameter α may be associated with the screening depth of the boundary layer
into the permeable block, while σ is directly related to the mean filtered velocity in
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Figure 17. Root-mean-square velocity and vorticity fluctuations: (a) σ = 100; (b) σ = 50. Lines are
from the simulation including permeable blocks (CP) and symbols are from the simulation with the
proposed boundary conditions (15) and (16) (CO).

the permeable block (Beavers & Joseph 1967). Since we were mainly concerned with
the flow above the permeable block, we fixed α to be 1 and varied σ (σ = 400, 200,
100 and 50) in the present study. Here, σ → ∞ corresponds to an impermeable wall.
With the slip-boundary condition suggested at the permeable wall, direct numerical
simulations of turbulent channel flow bounded by the permeable wall were performed.

Significant skin-friction reductions at the interface were observed in the presence
of permeable walls. The amount of skin-friction reduction became larger at smaller
σ (larger mean filtered velocity in the permeable block). The same trend was also
observed in laminar channel flow (Beavers & Joseph 1967) and this is consistent with
many other experiments on laminar flow over permeable walls. The mean velocity
profiles normalized by the actual wall-shear velocities showed that the slopes of the
log-law remained about the same as in the impermeable channel, but there was
downward shift in u+ − u+

wall vs. y+. These downward shifts were associated with the
reduced viscous sublayer thickness in the presence of permeable walls. A decrease
of the viscous sublayer thickness above the permeable wall is natural because the
permeable wall relaxes the no-slip boundary condition at the wall which is critical in
forming the viscous sublayer near the wall.

Turbulence intensities and pressure fluctuations above the permeable wall decreased
further at smaller σ except very near the wall. The increase of some turbulence
quantities there was due to the slip-velocity fluctuations at the permeable wall.
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The decrease of the wall pressure fluctuations is notable since the permeable wall
may be used to reduce the flow-induced noise in turbulent boundary layer. The
Reynolds shear stress and vorticity fluctuations above the permeable wall were also
significantly reduced. The weakened streamwise vorticity fluctuations imply weakened
ejection and sweep motions near the wall, which is also associated with reduced
turbulence production and Reynolds shear stress. The pressure–strain correlations
showed that the energy transfer among the three velocity components was suppressed
by the permeable wall. Also, the splatting near the wall was significantly attenuated
in the presence of the permeable wall.

For the validation of the proposed boundary condition, simulations using both the
Brinkman equation for the interior of the permeable block and the Navier–Stokes
equation for the main channel were performed and the results were compared with
those of simulations using the Navier–Stokes equation for the main channel together
with the proposed boundary condition at the permeable wall. Results (turbulence
statistics inside the main channel as well as instantaneous velocities at the permeable
interface) from the two different simulations agreed very well with each other for
the range of σ investigated in this study (σ = 50) and thus the proposed boundary
condition is thought to be suitable for direct numerical simulation of turbulent flow
over a permeable wall.

This work is sponsored by the Creative Research Initiatives through the Korean
Ministry of Science and Technology.

Appendix. Boundary condition suggested by Perot & Moin (1995) for a
‘perfectly’ permeable wall

Recently, Perot & Moin (1995) investigated turbulent flow over a ‘perfectly’ per-
meable wall to study the blocking effect of a no-slip wall. They allowed the fluid to
freely permeate through the surface, i.e. ∂v/∂y = 0 rather than v = 0 on the wall.
Thus the complete boundary condition at the wall is

uwall = wwall = 0,
∂v

∂y wall

= 0. (A 1)

In the present study, the boundary condition (A 1) is applied to turbulent channel
flow. The main difficulty of applying (A 1) to channel flow is how to computationally
implement ∂v/∂y|wall = 0. We apply three different methods as follows:

vn+1
wall = vn1 , (A 2)

vn+1
wall = vn+1

1 , (A 3)

vn+1
wall = C1v

n+1
1 + C2v

n+1
2 , (A 4)

where n is the time step, and v1 and v2 are the wall-normal velocities nearest to the wall
(see figure 18). The boundary condition (A 2) is an explicit treatment of ∂v/∂y|wall = 0.
Thus, ∂v/∂y|n+1

wall = 0 is not completely satisfied. The boundary condition (A 3) is an
implicit treatment of ∂v/∂y|wall = 0. Thus ∂v/∂y|n+1

wall = 0. However, in a staggered mesh
system, this boundary condition produces a non-negligible numerical error because it
implies ∂u/∂x + ∂w/∂z = 0 in the first numerical cell from continuity, which is not
physically correct. Thus, we use a three-point extrapolation scheme of second-order
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Figure 18. Schematic diagram of the staggered mesh system near the wall.
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Figure 19. Time history of the pressure gradient required to drive a fixed mass flow rate:
———, impermeable wall; – – – –, (A 2); · · · · · · ·, (A 3); — – —, (A 4).

accuracy for ∂v/∂y|n+1
wall = 0, which is (A 4). Here, C1 = (∆y1 + ∆y2)

2/(2∆y1∆y2 + ∆y2
2)

and C2 = −∆y2
1/(2∆y1∆y2 + ∆y2

2) (see figure 18).
Each of three different methods (A 2)–(A 4) is applied to turbulent channel flow and

its skin-friction variation is shown in figure 19. Surprisingly, the results are completely
different. The skin frictions due to (A 2) and (A 3) significantly increase compared to
the no-slip wall, while in the case of (A 4) it is nearly the same as that of the no-slip
wall. The root-mean-square wall-normal velocity fluctuations at the wall are shown in
figure 20. The velocity fluctuations at the wall significantly increase when (A 2) and
(A 3) are applied, but are very small in the case of (A 4). The skin-friction increase
by applying (A 1) to turbulent pipe flow was reported in Wagner & Friedrich (1997),
but their numerical scheme for (A 1) was not explicitly specified in the paper.

As was shown by Beavers & Joseph (1967) and also by the present study, the
skin friction is significantly decreased by the slip-boundary condition (14)–(17) at the
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Figure 20. Root-mean-square wall-normal velocity fluctuations at the wall normalized by the
wall-shear velocity uτim : – – – –, (A 2); · · · · · · ·, (A 3); — – —, (A 4).

permeable wall. Thus, the boundary condition used by Perot & Moin (1995) describes
a completely different turbulent flow field from ours, although both studies use the
same terminology for ‘permeable wall’.
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